Glucocorticoid receptor-mediated suppression of activator protein-1 activation and matrix metalloproteinase expression after spinal cord injury.

نویسندگان

  • J Xu
  • G M Kim
  • S H Ahmed
  • J Xu
  • P Yan
  • X M Xu
  • C Y Hsu
چکیده

Post-traumatic inflammatory reaction may contribute to progressive tissue damage after spinal cord injury (SCI). Two key transcription factors, nuclear factor kappaB (NF-kappaB) and activator protein-1 (AP-1), are activated in inflammation. An increase in NF-kappaB binding activity has been shown in the injured spinal cord. We report activation of AP-1 after SCI. Electrophoretic mobility shift assay showed that AP-1 binding activity increased after SCI, starting at 1 hr, peaking at 8 hr, and declining to basal levels by 7 d. Methylprednisolone (MP) is the only therapeutic agent approved by the Food and Drug Administration for treating patients with acute traumatic SCI. MP reduced post-traumatic AP-1 activation. RU486, a glucocorticoid receptor (GR) antagonist, reversed MP inhibition of AP-1 activation. Immunostaining showed an increase in the expression of the Fos-B and c-Jun components of AP-1 in the injured cord. A c-fos antisense oligodeoxynucleotide (ODN) inhibited AP-1, but not NF-kappaB, activation after SCI. AP-1 and NF-kappaB can transactivate genes encoding matrix metalloproteinase-1 (MMP-1) and MMP-9. Western blotting and immunostaining show increased expression of MMP-1 and MMP-9 in the injured cord. MP inhibited MMP-1 and MMP-9 expression after SCI. RU486 reversed this MP effect. The c-fos antisense ODN, however, failed to suppress MMP-1 or MMP-9 expression. These findings demonstrate that MP may suppress post-traumatic inflammatory reaction by inhibiting both the AP-1 and NF-kappaB transcription cascades via a GR mechanism. Expression of inflammatory genes such as MMP-1 and MMP-9 that are transactivated jointly by AP-1 and NF-kappaB may not be suppressed by inhibiting only AP-1 activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury

Introduction: Spinal cord injury (SCI) following traumatic events is associated with the limited therapeutic options and sever complications, which can be partly due to inflammatory response. Therefore, this study aims to explore the role of inflammation in spinal cord injury. The findings showed that the pathological conditions of nervous system lead to activation of microglia, astrocyte, neut...

متن کامل

Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage

Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...

متن کامل

Acupuncture-mediated inhibition of inflammation facilitates significant functional recovery after spinal cord injury.

Here, we first demonstrated the neuroprotective effect of acupuncture after SCI. Acupuncture applied at two specific acupoints, Shuigou (GV26) and Yanglingquan (GB34) significantly alleviated apoptotic cell death of neurons and oligodendrocytes, thereby leading to improved functional recovery after SCI. Acupuncture also inhibited caspase-3 activation and reduced the size of lesion cavity and ex...

متن کامل

Glucocorticoid receptor expression in the spinal cord after traumatic injury in adult rats.

Methylprednisolone (MP), a glucocorticoid, is the only effective therapeutic agent used in the clinical treatment of acute spinal cord injury (SCI). MP given within 8 hr after SCI significantly improves neurological function. Although the glucocorticoid receptor (GR) is suggested to mediate MP actions, limited knowledge is available on its expression and possible function after SCI. Presently, ...

متن کامل

Low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cell signaling promotes axonal regeneration.

Low-density lipoprotein receptors (LRPs) are present extensively on cells outside of the nervous system and classically exert roles in lipoprotein metabolism. It has been reported recently that LRP1 activation could phosphorylate the neurotrophin receptor TrkA in PC12 cells and increase neurite outgrowth from developing cerebellar granule cells. These intriguing findings led us to explore the h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2001